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With the continuous development of logistics and transportation towards unmanned intelligence,
more and more Autonomous Guided Vehicles (AGVs) are used in various industries. Anode
trailer is the necessary transfer equipment for aluminum electrolysis anodes. This study develops
an aluminum electrolysis anode transfer system based on AGV technology, and carries out the
basic methodology of multi-source Simultaneous Localization and Mapping (SLAM), based on
continuous time model through the multivariate SLAM, composite guidance algorithm for indoor
and outdoor complex scenes. Theoretical research is carried out to establish efficient data
processing and association of internal and external sensors for map optimization based on
triangular dissection, so as to improve the accuracy and robustness of the vehicle's map building
and positioning in indoor and outdoor complex scenes. It can realize unmanned work on site,
autonomous driving, and perform transportation tasks. The on-site test results show that the
precise detection degree in complex space is < 10 mm, the indoor positioning accuracy is
<20 mm, and the outdoor positioning accuracy is < 10 mm. The statistical analysis of the
operation status shows that compared with fuel AGV improves the operating costs of anode
transportation by 85 %.
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1. Introduction

Autonomous material handling in industrial environments, particularly in aluminum electrolysis
production, demands high-precision navigation systems capable of operating seamlessly across
indoor and outdoor settings. Traditional AGV solutions often rely on discrete-time SLAM
methods [1], which suffer from cumulative drift and degraded performance in dynamic or large-
scale environments. While visual-inertial SLAM (VSLAM) [2] and LiDAR-based approaches [3]
have shown promise, their standalone implementations struggle with sensor limitations, such as
illumination variations or sparse feature distributions.

The proposed system introduces a multi-source SLAM framework that integrates LIDAR, inertial
measurement units (IMUs), and visual sensors within a continuous-time model. Unlike
conventional discrete-time SLAM, this approach employs Gaussian process regression to
interpolate trajectories smoothly, reducing drift during long-duration operations [4]. Furthermore,
the multivariate SLAM composite guidance algorithm dynamically adjusts sensor fusion weights
based on environmental conditions, ensuring robustness during indoor-outdoor transitions.

A key innovation lies in the factor graph optimization with triangular dissection, which
decomposes the SLAM problem into sparse subgraphs for efficient computation [5]. This method
builds upon incremental smoothing techniques like iISAM?2 [6] but extends them to handle multi-
sensor data streams in real time. The system achieves positioning errors below 10 mm, surpassing
the accuracy of existing industrial AGVs [7].
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The proposed system bridges a critical gap in industrial automation by enabling reliable, high-
precision anode transfer in environments where traditional methods fail.

2. Multi-Source SLAM Framework for AGV Navigation

The proposed framework addresses the limitations of discrete-time SLAM by modeling the
AGV’s state as a continuous-time trajectory, enabling seamless integration of asynchronous
sensor measurements. This section presents the technical foundations of the system, focusing on
four key innovations: continuous-time state modeling, adaptive sensor fusion, scalable
optimization, and hybrid localization.

2.1 Continuous-Time State Modeling for AGV Dynamics

The AGV’s state x(t) at time t comprises its pose (position and rotation in 3D space) T(t) €
SE(3) (Special Euclidean group), velocity v(t), and IMU gyroscope and accelerometer biases

by (£), ba (t):

x(t) = {T(),v(t), by (), ba ()} (1)
The continuous-time motion model employs a Wiener process to describe IMU dynamics:
. A
T(6) = T(®) (0(t) — by (1)) 2)
v(t) = RO (at) —b (1)) + g 3)
where:
w(t) and a(t) Gyroscope and accelerometer measurements,
R(t) Rotation matrix from T(t), and
g Acceleration of gravity.
A hat operator which maps angular velocities to SE(3) elements.

2.2 Adaptive Multi-Sensor Fusion with Dynamic Weighting

Sensor residuals rj, are weighted by inverse covariance matrices X 1, updated in real-time based
on reliability metrics:

re = 2 — by (x(8)) “4)
where:
i sensor residual at time step #
Zk measurement given by a sensor
Ik predicted measurement (sensor model)
— i 2 2 2

2 = dlag(ak,L' Ok, v Uk,l) (5)
where:
X measurement noise covariance
Ok,L uncertainty of LiDAR
Okv uncertainty of visual sensor
Ok 1 uncertainty of inertial sensor.
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areas, occasionally causing feature tracking failures. These limitations suggest the need for
additional sensor modalities or algorithmic adaptations to handle extreme industrial conditions.
The computational demands of continuous-time SLAM, despite the triangular dissection
optimization, remain non-trivial for low-cost embedded systems. Field tests revealed that
sustained operation at 15 Hz requires GPU acceleration, increasing hardware costs by
approximately 30 % compared to conventional AGV controllers. This trade-off between
performance and cost necessitates further research into edge-optimized implementations.

4.2 Future Directions for Multi-Source SLAM in Industrial AGVs

Three key research directions emerge from this work: First, the development of physics-informed
sensor fusion algorithms could enhance robustness in extreme conditions. By incorporating
material science models of environmental interference (e.g., electromagnetic field effects on
IMU s, particulate scattering models for LiDAR), the system could preemptively compensate for
sensor degradation.

Second, the integration of learning-based uncertainty estimation could refine the dynamic
weighting mechanism. Recent advances in neural calibration networks [12] suggest potential for
automatically predicting sensor reliability from raw data streams, rather than relying on hand-
tuned covariance matrices.

Finally, the system’s success in aluminum plants highlights opportunities for standardization.
Developing open interfaces for industrial SLAM systems would facilitate adoption across
different manufacturing sectors, similar to how ROS transformed mobile robotics. This requires
addressing current limitations in real-time data sharing and cross-platform factor graph
interoperability.

5. Conclusions

The multi-source SLAM framework demonstrates significant advancements in AGV-based anode
transfer for aluminum electrolysis, achieving sub-centimeter precision through continuous-time
sensor fusion and adaptive optimization. Experimental results confirm its superiority over
conventional methods in both accuracy and operational efficiency, particularly in challenging
indoor-outdoor transitions. While current limitations exist regarding environmental robustness
and computational demands, the system’s modular design provides a foundation for future
enhancements. This work establishes a critical step toward fully autonomous industrial material
handling, with potential applications extending beyond aluminum production to other precision-
demanding sectors. The framework’s success underscores the importance of heterogeneous
sensor integration and real-time adaptive algorithms in modern industrial automation.
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