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Abstract 

With the continuous development of logistics and transportation towards unmanned intelligence, 

more and more Autonomous Guided Vehicles (AGVs) are used in various industries. Anode 

trailer is the necessary transfer equipment for aluminum electrolysis anodes. This study develops 

an aluminum electrolysis anode transfer system based on AGV technology, and carries out the 

basic methodology of multi-source Simultaneous Localization and Mapping (SLAM), based on 

continuous time model through the multivariate SLAM, composite guidance algorithm for indoor 

and outdoor complex scenes. Theoretical research is carried out to establish efficient data 

processing and association of internal and external sensors for map optimization based on 

triangular dissection, so as to improve the accuracy and robustness of the vehicle's map building 

and positioning in indoor and outdoor complex scenes. It can realize unmanned work on site, 

autonomous driving, and perform transportation tasks. The on-site test results show that the 

precise detection degree in complex space is ≤ 10 mm, the indoor positioning accuracy is 

≤ 20 mm, and the outdoor positioning accuracy is ≤ 10 mm. The statistical analysis of the 

operation status shows that compared with fuel AGV improves the operating costs of anode 

transportation by 85 %. 
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1. Introduction

Autonomous material handling in industrial environments, particularly in aluminum electrolysis 

production, demands high-precision navigation systems capable of operating seamlessly across 

indoor and outdoor settings. Traditional AGV solutions often rely on discrete-time SLAM 

methods [1], which suffer from cumulative drift and degraded performance in dynamic or large-

scale environments. While visual-inertial SLAM (VSLAM) [2] and LiDAR-based approaches [3] 

have shown promise, their standalone implementations struggle with sensor limitations, such as 

illumination variations or sparse feature distributions. 

The proposed system introduces a multi-source SLAM framework that integrates LiDAR, inertial 

measurement units (IMUs), and visual sensors within a continuous-time model. Unlike 

conventional discrete-time SLAM, this approach employs Gaussian process regression to 

interpolate trajectories smoothly, reducing drift during long-duration operations [4]. Furthermore, 

the multivariate SLAM composite guidance algorithm dynamically adjusts sensor fusion weights 

based on environmental conditions, ensuring robustness during indoor-outdoor transitions. 

A key innovation lies in the factor graph optimization with triangular dissection, which 

decomposes the SLAM problem into sparse subgraphs for efficient computation [5]. This method 

builds upon incremental smoothing techniques like iSAM2 [6] but extends them to handle multi-

sensor data streams in real time. The system achieves positioning errors below 10 mm, surpassing 

the accuracy of existing industrial AGVs [7]. 
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The proposed system bridges a critical gap in industrial automation by enabling reliable, high-

precision anode transfer in environments where traditional methods fail. 

 

2. Multi-Source SLAM Framework for AGV Navigation 

 

The proposed framework addresses the limitations of discrete-time SLAM by modeling the 

AGV’s state as a continuous-time trajectory, enabling seamless integration of asynchronous 

sensor measurements. This section presents the technical foundations of the system, focusing on 

four key innovations: continuous-time state modeling, adaptive sensor fusion, scalable 

optimization, and hybrid localization. 

 
2.1 Continuous-Time State Modeling for AGV Dynamics 

 

The AGV’s state x(𝑡) at time 𝑡 comprises its pose (position and rotation in 3D space) T(𝑡) ∈
𝑆𝐸(3) (Special Euclidean group), velocity v(𝑡), and IMU gyroscope and accelerometer biases 

b𝑔(𝑡), b𝑎(𝑡): 

x(𝑡) = {T(𝑡), v(𝑡), b𝑔(𝑡), b𝑎(𝑡)} (1) 

 

The continuous-time motion model employs a Wiener process to describe IMU dynamics: 

 

Ṫ(𝑡) = T(𝑡) (ω(𝑡) − b𝑔(𝑡))
∧

 (2) 

v̇(𝑡) = R(𝑡)(a(𝑡) − b𝑎(𝑡)) + g  (3) 

 

where: 

ω(𝑡) and a(𝑡)  Gyroscope and accelerometer measurements, 

R(𝑡)  Rotation matrix from T(𝑡), and  

g  Acceleration of gravity.  

∧   hat operator which maps angular velocities to SE(3) elements. 

 
2.2 Adaptive Multi-Sensor Fusion with Dynamic Weighting 

 

Sensor residuals r𝑘 are weighted by inverse covariance matrices 𝛴𝑘
−1, updated in real-time based 

on reliability metrics: 

 

r𝑘 = z𝑘 − ℎ𝑘(x(𝑡𝑘))  (4) 

 
where: 

rk sensor residual at time step tk 

zk measurement given by a sensor 

hk predicted measurement (sensor model) 

 

𝛴𝑘 = diag(𝜎𝑘,L
2 , 𝜎𝑘,V

2 , 𝜎𝑘,I
2 )  (5) 

 

where: 

𝛴𝑘 measurement noise covariance  

𝜎𝑘,L uncertainty of LiDAR 

𝜎𝑘,V uncertainty of visual sensor 

𝜎𝑘,I  uncertainty of inertial sensor. 
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areas, occasionally causing feature tracking failures. These limitations suggest the need for 

additional sensor modalities or algorithmic adaptations to handle extreme industrial conditions. 

The computational demands of continuous-time SLAM, despite the triangular dissection 

optimization, remain non-trivial for low-cost embedded systems. Field tests revealed that 

sustained operation at 15 Hz requires GPU acceleration, increasing hardware costs by 

approximately 30 % compared to conventional AGV controllers. This trade-off between 

performance and cost necessitates further research into edge-optimized implementations. 

 

4.2 Future Directions for Multi-Source SLAM in Industrial AGVs 

 

Three key research directions emerge from this work: First, the development of physics-informed 

sensor fusion algorithms could enhance robustness in extreme conditions. By incorporating 

material science models of environmental interference (e.g., electromagnetic field effects on 

IMUs, particulate scattering models for LiDAR), the system could preemptively compensate for 

sensor degradation. 

 

Second, the integration of learning-based uncertainty estimation could refine the dynamic 

weighting mechanism. Recent advances in neural calibration networks [12] suggest potential for 

automatically predicting sensor reliability from raw data streams, rather than relying on hand-

tuned covariance matrices. 

 

Finally, the system’s success in aluminum plants highlights opportunities for standardization. 

Developing open interfaces for industrial SLAM systems would facilitate adoption across 

different manufacturing sectors, similar to how ROS transformed mobile robotics. This requires 

addressing current limitations in real-time data sharing and cross-platform factor graph 

interoperability. 

 

5.  Conclusions 

 

The multi-source SLAM framework demonstrates significant advancements in AGV-based anode 

transfer for aluminum electrolysis, achieving sub-centimeter precision through continuous-time 

sensor fusion and adaptive optimization. Experimental results confirm its superiority over 

conventional methods in both accuracy and operational efficiency, particularly in challenging 

indoor-outdoor transitions. While current limitations exist regarding environmental robustness 

and computational demands, the system’s modular design provides a foundation for future 

enhancements. This work establishes a critical step toward fully autonomous industrial material 

handling, with potential applications extending beyond aluminum production to other precision-

demanding sectors. The framework’s success underscores the importance of heterogeneous 

sensor integration and real-time adaptive algorithms in modern industrial automation. 
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